Back to Search Start Over

Mechanical, viscoelastic and sorption behaviour of acrylonitrile–butadiene–styrene composites with 0D and 1D nanofillers.

Authors :
Rasana, N.
Jayanarayanan, K.
Pegoretti, Alessandro
Rammanoj, G.
Arunkumar, K.
Hariprasanth, T.
Source :
Polymer Bulletin; Oct2022, Vol. 79 Issue 10, p8369-8395, 27p
Publication Year :
2022

Abstract

This work presents an investigation on the morphology, mechanical, viscoelastic and transport properties of acrylonitrile–butadiene–styrene (ABS) nanocomposites reinforced with nanosilica (NS) and multiwalled carbon nanotubes (MWCNTs). The nanofillers content was varied from 1 to 5 wt%. Morphological and mechanical investigations revealed a better dispersion and effective stress transfer in carboxyl-treated MWCNT composites with respect to silane-treated NS. The highest values of tensile strength and Young's modulus were reached for 5 wt% of MWCNT. Theoretical modelling of elastic modulus of the composites with carbon nanotubes (CNT) was in good agreement with experimental data. On the other hand, in the case of composites with NS an interfacial modulus of 2.5 GPa was assumed in the model to approach the experimental data. The highest value of storage modulus was reported at a MWCNT content of 5 wt% followed by 3 wt% which discloses the stiffening effect of long curly CNTs in comparison with NS. The damping behaviour indicated a lowering and broadening of tan δ peak induced by CNT. The storage modulus and damping behaviour of the nanocomposites were analysed using theoretical models in which aspect ratio, stiffening effect, adhesion and entanglement phenomena were included. The lowest solvent diffusivity and permeability was exhibited by composite with MWCNT at 5 wt% owing to the tortuosity, higher adhesion and aspect ratio of the filler and revealed a decrement in permeability by 62% with regard to neat ABS. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01700839
Volume :
79
Issue :
10
Database :
Complementary Index
Journal :
Polymer Bulletin
Publication Type :
Academic Journal
Accession number :
159196268
Full Text :
https://doi.org/10.1007/s00289-021-03896-3