Back to Search
Start Over
A spatially resolved stochastic model reveals the role of supercoiling in transcription regulation.
- Source :
- PLoS Computational Biology; 9/19/2022, Vol. 18 Issue 9, p1-26, 26p, 1 Diagram, 1 Chart, 5 Graphs
- Publication Year :
- 2022
-
Abstract
- In Escherichia coli, translocation of RNA polymerase (RNAP) during transcription introduces supercoiling to DNA, which influences the initiation and elongation behaviors of RNAP. To quantify the role of supercoiling in transcription regulation, we developed a spatially resolved supercoiling model of transcription. The integrated model describes how RNAP activity feeds back with the local DNA supercoiling and how this mechanochemical feedback controls transcription, subject to topoisomerase activities and stochastic topological domain formation. This model establishes that transcription-induced supercoiling mediates the cooperation of co-transcribing RNAP molecules in highly expressed genes, and this cooperation is achieved under moderate supercoiling diffusion and high topoisomerase unbinding rates. It predicts that a topological domain could serve as a transcription regulator, generating substantial transcriptional noise. It also shows the relative orientation of two closely arranged genes plays an important role in regulating their transcription. The model provides a quantitative platform for investigating how genome organization impacts transcription. Author summary: DNA mechanics and transcription dynamics are intimately coupled. During transcription, the translocation of RNA polymerase overwinds the DNA ahead and underwinds the DNA behind, rendering the DNA supercoiled. The supercoiled DNA could, in return, influences the behavior of the RNA polymerase, and consequently the amount of mRNA product it makes. Furthermore, supercoils could propagate on the DNA over thousands of base pairs, impacting RNA polymerase molecules at faraway sites. These complicated interplays between supercoiling and RNA polymerase makes supercoiling an important transcription regulator. To quantitatively investigate the role of supercoiling in transcription, we build a spatially resolved model that links transcription with the generation, propagation, and dissipation of supercoiling. Our model reveals that supercoiling mediates transcription at multiple length scales. At a single-gene scale, we show that supercoiling gives rise to the collective motion of co-transcribing RNA polymerase molecules, supporting recent experimental observations. Additionally, large variations in mRNA production of a gene can arise from the constraints of supercoiling diffusion in a topological domain. At a multi-gene scale, we show that supercoiling dynamics allow two adjacent genes influence each other's transcription kinetics, thus serving as a transcription regulator. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1553734X
- Volume :
- 18
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- PLoS Computational Biology
- Publication Type :
- Academic Journal
- Accession number :
- 159191411
- Full Text :
- https://doi.org/10.1371/journal.pcbi.1009788