Back to Search Start Over

Geometric algebra graph neural network for cross-domain few-shot classification.

Authors :
Liu, Qifan
Cao, Wenming
Source :
Applied Intelligence; Sep2022, Vol. 52 Issue 11, p12422-12435, 14p
Publication Year :
2022

Abstract

Graph neural networks (GNNs) show powerful processing ability on graph structure data for nodes and graph classification. However, existing GNN models may cause information loss with the increasing number of the network layer. To improve the graph-structured data features representation quality, we introduce geometric algebra into graph neural networks. In this paper, we construct a high-dimensional geometric algebra (GA) space in the Non-Euclidean domain to better learn vector embedding for graph nodes. We focus our study on few-shot learning and propose a geometric algebra graph neural network (GA-GNN) as the metric network for cross-domain few-shot classification tasks. In the geometric algebra space, the feature nodes are mapped into hyper-complex vector, which helps reduce the distortion of feature information with the increased hidden layers. The experimental results demonstrate that the approach we proposed achieves the state-of-the-art few-shot cross-domain classification accuracy in five public datasets. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
ALGEBRA
CLASSIFICATION
VECTOR data

Details

Language :
English
ISSN :
0924669X
Volume :
52
Issue :
11
Database :
Complementary Index
Journal :
Applied Intelligence
Publication Type :
Academic Journal
Accession number :
159159712
Full Text :
https://doi.org/10.1007/s10489-021-03124-5