Back to Search Start Over

A Differential Subgrid Stress Model and Its Assessment in Large Eddy Simulations of Non-Premixed Turbulent Combustion.

Authors :
Balabanov, Roman
Usov, Lev
Troshin, Alexei
Vlasenko, Vladimir
Sabelnikov, Vladimir
Source :
Applied Sciences (2076-3417); Sep2022, Vol. 12 Issue 17, p8491, 21p
Publication Year :
2022

Abstract

We present a new subgrid stress model for the large eddy simulation of turbulent flows based on the solution of transport equations for stress tensor components. The model was a priori term-by-term calibrated against an open DNS database on forced isotropic turbulence (Johns Hopkins University database). After that, it was applied in a large eddy simulation of non-premixed turbulent combustion. To demonstrate the impact of the new subgrid stress model on scalar fields, we excluded the backward effect of heat release on the subgrid stresses, considering an isothermal reaction (i.e., diluted mixture; the density variations associated with chemical heat release can be neglected) and a Burke–Schumann reaction sheet approximation. A periodic box filled with a homogeneous turbulent velocity field and a three-layer top-hat mixture fraction field was studied. Four simulations were performed in which a fixed model for mixture fraction and its variance was combined with either the proposed subgrid stress model or one of the standard models, including Smagorinsky, dynamic Smagorinsky and WALE. Qualitatively correct backscatter was observed in a simulation with the new model. The differences in the statistics of the mixture fraction and reactive component fields caused by the new subgrid stress model were analyzed and discussed. The importance of using an advanced subgrid stress model was highlighted. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
12
Issue :
17
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
159005535
Full Text :
https://doi.org/10.3390/app12178491