Back to Search Start Over

Pioglitazone decreased renal calcium oxalate crystal formation by suppressing M1 macrophage polarization via the PPAR-γ-miR-23 axis.

Authors :
Zhiqiang Chen
Peng Yuan
Xifeng Sun
Kun Tang, '
Haoran Liu
Shanfu Han
Tao Ye
Xiao Liu
Xiaoqi Yang
Jin Zeng
Libin Yan
Jinchun Xing
Kefeng Xiao
Zhangqun Ye
Hua Xu
Source :
American Journal of Physiology: Renal Physiology; Jul2019, Vol. 317 Issue 1, pF137-F151, 15p, 2 Color Photographs, 6 Graphs
Publication Year :
2019

Abstract

Interaction of pioglitazone (PGZ) and macrophages (Mps) in renal crystal formation remains unclear. In the present study, we investigated the possible mechanisms involved with Mps of PGZ in suppressing renal crystal formation. Crystal formation in the mouse kidney was detected using polarized light optical microscopy and Pizzolato staining. Gene expression was detected by Western blot analysis, quantitative RT-PCR, immunohistochemistry, immunofluorescence, and ELISA. Mp phenotypes were identified by flow cytometric analysis. Cell apoptosis was detected with TUNEL assay, and tubular injury was detected with periodic acid-Schiff staining. Interaction of peroxisome proliferator-activated receptor (PPAR)-γ and promoter was determined by chromatin immunoprecipitation assay. Luciferase reporter assay was performed to authenticate target genes of miRNA-23 (miR-23). Recombinant adenovirus was used to elucidate the role of miR-23 in vivo. Renal crystal formation, inflammation, tubular injury, and cell apoptosis were significantly marked in glyoxylic acid-treated groups and significantly decreased in PGZ-treated groups. PGZ significantly reduced Mp infiltration and M1 Mp polarization in the kidney. In vitro, PGZ shifted crystal-stimulated M1-predominant Mps to M2-predominant Mps, which were anti-inflammatory. PPAR-γ could directly bind to one PPAR-γ regulatory element in the promoter of pre-miR-23 to promote expression of miR-23 in Mps. We identified two downstream target genes of miR-23, interferon regulatory factor 1 and Pknox1. Moreover, miR-23 decreased crystal deposition, M1 Mp polarization, and injury in the kidney. This study has proven that PGZ decreased renal calcium oxalate crystal formation and renal inflammatory injury by suppressing M1 Mp polarization through a PPAR-γ-miR-23- interferon regulatory factor 1/Pknox1 axis. PGZ is liable to be a potential therapeutic medicine for treating urolithiasis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1931857X
Volume :
317
Issue :
1
Database :
Complementary Index
Journal :
American Journal of Physiology: Renal Physiology
Publication Type :
Academic Journal
Accession number :
158942106
Full Text :
https://doi.org/10.1152/ajprenal.00047.2019