Back to Search Start Over

Predictive modeling in a steelmaking process using optimized relevance vector regression and support vector regression.

Authors :
Acosta, Simone Massulini
Amoroso, Anderson Levati
Sant'Anna, Ângelo Márcio Oliveira
Junior, Osiris Canciglieri
Source :
Annals of Operations Research; Sep2022, Vol. 316 Issue 2, p905-926, 22p
Publication Year :
2022

Abstract

The existence of contaminants in metal alloys products is the main problem affecting the product quality, which is an important requirement for competitiveness in industries. This paper proposes the application of a relevance vector machine for regression (RVR) and a support vector machine for regression (SVR) optimized by a self-adaptive differential evolution algorithm for regression to model the phosphorus concentration levels in a steelmaking process based on actual data. In general, the appropriate choice of learning hyperparameters is a crucial step in obtaining a well-tuned RVM and SVM. To address this issue, we apply a self-adaptive differential evolution algorithm, which is an evolutionary algorithm for global optimization. We compare the performance of the RVR and SVR models with the ridge regression, multiple linear regression, model trees, artificial neural network, and random vector functional link neural network models. RVR and SVR models have smaller RMSE values and better performance than the other models. Our study indicates that the RVR and SVR models are adequate tools for predicting the phosphorus concentration levels in the steelmaking process. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02545330
Volume :
316
Issue :
2
Database :
Complementary Index
Journal :
Annals of Operations Research
Publication Type :
Academic Journal
Accession number :
158935370
Full Text :
https://doi.org/10.1007/s10479-021-04053-9