Back to Search Start Over

Petrogenesis and Tectonic Implication of the Hongtaiping High-Mg Diorite in the Wangqing Area, NE China: Constraints from Geochronology, Geochemistry and Hf Isotopes.

Authors :
Lu, Siyu
Ren, Yunsheng
Yang, Qun
Hao, Yujie
Zhao, Xuan
Source :
Minerals (2075-163X); Aug2022, Vol. 12 Issue 8, p1002-1002, 20p
Publication Year :
2022

Abstract

This study presents new data from zircon U–Pb dating and Hf isotope analysis, as well as whole-rock major- and trace-element compositions of the Hongtaiping high-Mg diorite in the Wangqing area of Yanbian, NE China. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) zircon U–Pb dating gives an eruption age of ca. 267 Ma for the high-Mg diorite. These samples have MgO contents of 13.30% to 16.58% and high transition metal element concentrations, classified as sanukite. Their rare earth element (REE) contents range from 45.2 to 68.4 ppm and are characterized by slightly positive Eu anomalies (Eu/Eu* = 1.08–1.17). They show enrichment in light REEs (LREEs) and depletion in heavy REEs (HREEs), with LREE/HREE ratios = 6.54–6.97 and (La/Yb)<subscript>N</subscript> values = 7.24–8.08. The Hongtaiping high-Mg diorite is enriched in Rb, U, K, and Sr, but depleted in Th, Nb, and Ta. High MgO contents, Mg<superscript>#</superscript> values, and transition metal element concentrations imply that the magma experienced insignificant crystallization fractionation and crustal contamination. Relatively homogenous positive Hf isotopic values indicate that the original magma was generated by the partial melting of a depleted mantle wedge that was metasomatized by subducting slab fluids. The magma was generated by the moderate degree partial melting (20%–30%) of a garnet lherzolite source. Combined with previous studies, this shows that the high-Mg diorite was formed by the northward subduction of the Paleo-Asian oceanic plate during the Middle Permian. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2075163X
Volume :
12
Issue :
8
Database :
Complementary Index
Journal :
Minerals (2075-163X)
Publication Type :
Academic Journal
Accession number :
158914084
Full Text :
https://doi.org/10.3390/min12081002