Back to Search Start Over

Enhancing Li+ Transport in NMC811||Graphite Lithium‐Ion Batteries at Low Temperatures by Using Low‐Polarity‐Solvent Electrolytes.

Authors :
Nan, Bo
Chen, Long
Rodrigo, Nuwanthi D.
Borodin, Oleg
Piao, Nan
Xia, Jiale
Pollard, Travis
Hou, Singyuk
Zhang, Jiaxun
Ji, Xiao
Xu, Jijian
Zhang, Xiyue
Ma, Lin
He, Xinzi
Liu, Sufu
Wan, Hongli
Hu, Enyuan
Zhang, Weiran
Xu, Kang
Yang, Xiao‐Qing
Source :
Angewandte Chemie; 8/26/2022, Vol. 134 Issue 35, p1-11, 11p
Publication Year :
2022

Abstract

LiNixCoyMnzO2 (x+y+z=1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct, achieving facile Li+ transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi0.8Mn0.1Co0.1O2||graphite cells to deliver a capacity of ≈113 mAh g−1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
134
Issue :
35
Database :
Complementary Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
158634688
Full Text :
https://doi.org/10.1002/ange.202205967