Back to Search Start Over

The Effect of Annealing and Optical Radiation Treatment on Graphene Resonators.

Authors :
Liu, Yujian
Li, Cheng
Fan, Shangchun
Song, Xuefeng
Wan, Zhen
Source :
Nanomaterials (2079-4991); Aug2022, Vol. 12 Issue 15, p2725-2725, 12p
Publication Year :
2022

Abstract

Graphene resonant sensors have shown strong competitiveness with respect to sensitivity and size. To advance the applications of graphene resonant sensors, the damage behaviors of graphene harmonic oscillators after thermal annealing and laser irradiation were investigated by morphology analysis and frequency domain vibration characteristics. The interface stress was proven to be the key factor that directly affected the yield of resonators. The resulting phenomenon could be improved by appropriately controlling the annealing temperature and size of resonators, thereby achieving membrane intactness of up to 96.4%. However, micro-cracks were found on the graphene sheets when continuous wave (CW) laser power was more than 4 mW. Moreover, the fluctuating light energy would also cause mechanical fatigue in addition to the photothermal effect, and the threshold damage power for the sinusoidally modulated laser was merely 2 mW. In this way, based on the amplitude-frequency surface morphology of the graphene resonator, the thermal time constant of the order of a few microseconds was confirmed to evaluate the damage of the graphene oscillator in situ and in real time, which could be further extended for those resonators using other 2D materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
15
Database :
Complementary Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
158525430
Full Text :
https://doi.org/10.3390/nano12152725