Back to Search Start Over

Alternative Controlling Agent of Theobroma grandiflorum Pests: Nanoscale Surface and Fractal Analysis of Gelatin/PCL Loaded Particles Containing Lippia origanoides Essential Oil.

Authors :
Rocha, Ana Luisa Farias
de Aguiar Nunes, Ronald Zico
Matos, Robert Saraiva
da Fonseca Filho, Henrique Duarte
de Araújo Bezerra, Jaqueline
Lima, Alessandra Ramos
Guimarães, Francisco Eduardo Gontijo
Pamplona, Ana Maria Santa Rosa
Majolo, Cláudia
de Souza, Maria Geralda
Campelo, Pedro Henrique
Ţălu, Ştefan
Bagnato, Vanderlei Salvador
Inada, Natalia Mayumi
Sanches, Edgar Aparecido
Source :
Nanomaterials (2079-4991); Aug2022, Vol. 12 Issue 15, p2712-2712, 22p
Publication Year :
2022

Abstract

A new systematic structural study was performed using the Atomic Force Microscopy (AFM) reporting statistical parameters of polymeric particles based on gelatin and poly-ε-caprolactone (PCL) containing essential oil from Lippia origanoides. The developed biocides are efficient alternative controlling agents of Conotrachelus humeropictus and Moniliophtora perniciosa, the main pests of Theobroma grandiflorum. Our results showed that the particles morphology can be successfully controlled by advanced stereometric parameters, pointing to an appropriate concentration of encapsulated essential oil according to the particle surface characteristics. For this reason, the absolute concentration of 1000 µg·mL<superscript>−1</superscript> (P<subscript>1000</subscript> system) was encapsulated, resulting in the most suitable surface microtexture, allowing a faster and more efficient essential oil release. Loaded particles presented zeta potential around (–54.3 ± 2.3) mV at pH = 8, and particle size distribution ranging from 113 to 442 nm. The hydrodynamic diameter of 90% of the particle population was found to be up to (405 ± 31) nm in the P<subscript>1000</subscript> system. The essential oil release was evaluated up to 80 h, with maximum release concentrations of 63% and 95% for P<subscript>500</subscript> and P<subscript>1000</subscript>, respectively. The best fit for the release profiles was obtained using the Korsmeyer–Peppas mathematical model. Loaded particles resulted in 100% mortality of C. humeropictus up to 48 h. The antifungal tests against M. perniciosa resulted in a minimum inhibitory concentration of 250 µg·mL<superscript>−1</superscript>, and the P<subscript>1000</subscript> system produced growth inhibition up to 7 days. The developed system has potential as alternative controlling agent, due to its physical stability, particle surface microtexture, as well as pronounced bioactivity of the encapsulated essential oil. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
15
Database :
Complementary Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
158525417
Full Text :
https://doi.org/10.3390/nano12152712