Back to Search Start Over

TET enzymes regulate skeletal development through increasing chromatin accessibility of RUNX2 target genes.

Authors :
Wang, Lijun
You, Xiuling
Ruan, Dengfeng
Shao, Rui
Dai, Hai-Qiang
Shen, Weiliang
Xu, Guo-Liang
Liu, Wanlu
Zou, Weiguo
Source :
Nature Communications; 8/11/2022, Vol. 13 Issue 1, p1-15, 15p
Publication Year :
2022

Abstract

The Ten-eleven translocation (TET) family of dioxygenases mediate cytosine demethylation by catalyzing the oxidation of 5-methylcytosine (5mC). TET-mediated DNA demethylation controls the proper differentiation of embryonic stem cells and TET members display functional redundancy during early gastrulation. However, it is unclear if TET proteins have functional significance in mammalian skeletal development. Here, we report that Tet genes deficiency in mesoderm mesenchymal stem cells results in severe defects of bone development. The existence of any single Tet gene allele can support early bone formation, suggesting a functional redundancy of TET proteins. Integrative analyses of RNA-seq, Whole Genome Bisulfite Sequencing (WGBS), 5hmC-Seal and Assay for Transposase-Accessible Chromatin (ATAC-seq) demonstrate that TET-mediated demethylation increases the chromatin accessibility of target genes by RUNX2 and facilities RUNX2-regulated transcription. In addition, TET proteins interact with RUNX2 through their catalytic domain to regulate cytosine methylation around RUNX2 binding region. The catalytic domain is indispensable for TET enzymes to regulate RUNX2 transcription activity on its target genes and to regulate bone development. These results demonstrate that TET enzymes function to regulate RUNX2 activity and maintain skeletal homeostasis. Here the authors investigate the role of the TET family of DNA demethylases in mammalian skeletal development. They find that loss of TETs leads to hypermethylation that results in decreased chromatin accessibility of RUNX2 target genes, repressing osteoblast differentiation and leading to skeletal defects in mouse such as short limbs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
158484922
Full Text :
https://doi.org/10.1038/s41467-022-32138-x