Back to Search
Start Over
On a Type I Singularity Condition in Terms of the Pressure for the Euler Equations in ℝ3.
- Source :
- IMRN: International Mathematics Research Notices; Jun2022, Vol. 2022 Issue 11, p9013-9023, 11p
- Publication Year :
- 2022
-
Abstract
- We prove a blow up criterion in terms of the Hessian of the pressure of smooth solutions |$u\in C([0, T); W^{2,q} (\mathbb R^3))$| , |$q>3$| of the incompressible Euler equations. We show that a blow up at |$t=T$| happens only if $$\begin{align*} &\int_0 ^T \int_0 ^t \left\{\int_0 ^s \|D^2 p (\tau)\|_{L^\infty} \textrm{d}\tau \exp \left(\int_{s} ^t \int_0 ^{\sigma} \|D^2 p (\tau)\|_{L^\infty} \textrm{d}\tau \textrm{d}\sigma \right) \right\} \textrm{d}s \textrm{d}t \, = +\infty.\end{align*}$$ As consequences of this criterion we show that there is no blow up at |$t=T$| if |$ \|D^2 p(t)\|_{L^\infty } \le \frac{c}{(T-t)^2}$| with |$c<1$| as |$t\nearrow T$|. Under the additional assumption of |$\int _0 ^T \|u(t)\|_{L^\infty (B(x_0, \rho))} \textrm{d}t <+\infty $| , we obtain localized versions of these results. [ABSTRACT FROM AUTHOR]
- Subjects :
- EULER equations
Subjects
Details
- Language :
- English
- ISSN :
- 10737928
- Volume :
- 2022
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- IMRN: International Mathematics Research Notices
- Publication Type :
- Academic Journal
- Accession number :
- 158424656
- Full Text :
- https://doi.org/10.1093/imrn/rnab014