Back to Search Start Over

Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI).

Authors :
Daebeler, Anne
Petrová, Eva
Kinz, Elena
Grausenburger, Susanne
Berthold, Helene
Sandén, Taru
Angel, Roey
the high-school students of biology project groups I, II, and III from 2018–2019
Source :
SOIL; 2022, Vol. 8 Issue 1, p163-176, 14p
Publication Year :
2022

Abstract

Including information about soil microbial communities into global decomposition models is critical for predicting and understanding how ecosystem functions may shift in response to global change. Here we combined a standardised litter bag method for estimating decomposition rates, the Tea Bag Index (TBI), with high-throughput sequencing of the microbial communities colonising the plant litter in the bags. Together with students of the Federal College for Viticulture and Fruit Growing, Klosterneuburg, Austria, acting as citizen scientists, we used this approach to investigate the diversity of prokaryotes and fungi-colonising recalcitrant (rooibos) and labile (green tea) plant litter buried in three different soil types and during four seasons with the aim of (i) comparing litter decomposition (decomposition rates (k) and stabilisation factors (S)) between soil types and seasons, (ii) comparing the microbial communities colonising labile and recalcitrant plant litter between soil types and seasons, and (iii) correlating microbial diversity and taxa relative abundance patterns of colonisers with litter decomposition rates (k) and stabilisation factors (S). Stabilisation factor (S), but not decomposition rate (k), correlated with the season and was significantly lower in the summer, indicating a decomposition of a larger fraction of the organic material during the warm months. This finding highlights the necessity to include colder seasons in the efforts of determining decomposition dynamics in order to quantify nutrient cycling in soils accurately. With our approach, we further showed selective colonisation of plant litter by fungal and prokaryotic taxa sourced from the soil. The community structures of these microbial colonisers differed most profoundly between summer and winter, and selective enrichment of microbial orders on either rooibos or green tea hinted at indicator taxa specialised for the primary degradation of recalcitrant or labile organic matter, respectively. Our results collectively demonstrate the importance of analysing decomposition dynamics over multiple seasons and further testify to the potential of the microbiome-resolved TBI to identify the active component of the microbial community associated with litter decomposition. This work demonstrates the power of the microbiome-resolved TBI to give a holistic description of the litter decomposition process in soils. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21993971
Volume :
8
Issue :
1
Database :
Complementary Index
Journal :
SOIL
Publication Type :
Academic Journal
Accession number :
158314943
Full Text :
https://doi.org/10.5194/soil-8-163-2022