Back to Search Start Over

Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well.

Authors :
Alves, Claudianor O.
Ji, Chao
Source :
SCIENCE CHINA Mathematics; Aug2022, Vol. 65 Issue 8, p1577-1598, 22p
Publication Year :
2022

Abstract

This article concerns the existence of multi-bump positive solutions for the following logarithmic Schrödinger equation: { u + V (x) u = u log u 2 i n R N , u H 1 (R N) , where N ⩾ 1, ⋋ > 0 is a parameter and the nonnegative continuous function V: ℝ<superscript>N</superscript> → ℝ has potential well Ω:= int V<superscript>−1</superscript>(0) which possesses k disjoint bounded components Ω= ∪ j = 1 k Ω j . Using the variational methods, we prove that if the parameter ⋋ > 0 is large enough, then the equation has at least 2<superscript>k</superscript> − 1 multi-bump positive solutions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16747283
Volume :
65
Issue :
8
Database :
Complementary Index
Journal :
SCIENCE CHINA Mathematics
Publication Type :
Academic Journal
Accession number :
158137742
Full Text :
https://doi.org/10.1007/s11425-020-1821-9