Back to Search
Start Over
Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well.
- Source :
- SCIENCE CHINA Mathematics; Aug2022, Vol. 65 Issue 8, p1577-1598, 22p
- Publication Year :
- 2022
-
Abstract
- This article concerns the existence of multi-bump positive solutions for the following logarithmic Schrödinger equation: { u + V (x) u = u log u 2 i n R N , u H 1 (R N) , where N ⩾ 1, ⋋ > 0 is a parameter and the nonnegative continuous function V: ℝ<superscript>N</superscript> → ℝ has potential well Ω:= int V<superscript>−1</superscript>(0) which possesses k disjoint bounded components Ω= ∪ j = 1 k Ω j . Using the variational methods, we prove that if the parameter ⋋ > 0 is large enough, then the equation has at least 2<superscript>k</superscript> − 1 multi-bump positive solutions. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16747283
- Volume :
- 65
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- SCIENCE CHINA Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 158137742
- Full Text :
- https://doi.org/10.1007/s11425-020-1821-9