Back to Search Start Over

Application of Extremely Randomised Trees for exploring influential factors on variant crash severity data.

Authors :
Afshar, Farshid
Seyedabrishami, Seyedehsan
Moridpour, Sara
Source :
Scientific Reports; 7/7/2022, Vol. 12 Issue 1, p1-19, 19p
Publication Year :
2022

Abstract

Crash severity models play a crucial role in evaluating the influencing factors in the severity of traffic crashes. In this study, Extremely Randomised Tree (ERT) is used as a machine learning technique to analyse the severity of crashes. The crash data in the province of Khorasan Razavi, Iran, for a period of 5 years from 2013 to 2017, is used for crash severity model development. The dataset includes traffic-related variables, vehicle specifications, vehicle movement, land use characteristics, temporal characteristics, and environmental variables. In this paper, Feature Importance Analysis (FIA), Partial Dependence Plots (PDP), and Individual Conditional Expectation (ICE) plots are utilised to analyse and interpret the results. According to the results, the involvement of vulnerable road users such as motorcyclists and pedestrians alongside traffic-related variables are among the most significant variables in crash severity. Results show that the presence of motorcycles can increase the probability of injury crashes by around 30% and almost double the probability of fatal crashes. Analysing the interaction of PDPs shows that driving speeds above 60 km/h in residential areas raises the probability of injury crashes by about 10%. In addition, at speeds higher than 70 km/h, the presence of pedestrians approximately increases the probability of fatal crashes by 6%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
157871588
Full Text :
https://doi.org/10.1038/s41598-022-15693-7