Back to Search Start Over

Variable Selection of Heterogeneous Spatial Autoregressive Models via Double-Penalized Likelihood.

Authors :
Tian, Ruiqin
Xia, Miaojie
Xu, Dengke
Source :
Symmetry (20738994); Jun2022, Vol. 14 Issue 6, pN.PAG-N.PAG, 17p
Publication Year :
2022

Abstract

Heteroscedasticity is often encountered in spatial-data analysis, so a new class of heterogeneous spatial autoregressive models is introduced in this paper, where the variance parameters are allowed to depend on some explanatory variables. Here, we are interested in the problem of parameter estimation and the variable selection for both the mean and variance models. Then, a unified procedure via double-penalized quasi-maximum likelihood is proposed, to simultaneously select important variables. Under certain regular conditions, the consistency and oracle property of the resulting estimators are established. Finally, both simulation studies and a real data analysis of the Boston housing data are carried to illustrate the developed methodology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20738994
Volume :
14
Issue :
6
Database :
Complementary Index
Journal :
Symmetry (20738994)
Publication Type :
Academic Journal
Accession number :
157824235
Full Text :
https://doi.org/10.3390/sym14061200