Back to Search
Start Over
Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices.
- Source :
- Micromachines; Jun2022, Vol. 13 Issue 6, p907-N.PAG, 9p
- Publication Year :
- 2022
-
Abstract
- A self-folding method that can fold a thick (~10 μm) metal layer with a large curvature (>1 mm<superscript>−1</superscript>) and is resistant to repetitive folding deformation is proposed. Given the successful usage of hinged origami/kirigami structures forms in deployable structures, they show strong potential for application in stretchable electronic devices. There are, however, two key difficulties in applying origami/kirigami methods to stretchable electronic devices. The first is that a thick metal layer used as the conductive layer of electronic devices is too hard for self-folding as it is. Secondly, a thick metal layer breaks on repetitive folding deformation at a large curvature. To overcome these difficulties, this paper proposes a self-folding method using hinges on a thick metal layer by applying a meander structure. Such a structure can be folded at a large curvature even by weak driving forces (such as those produced by self-folding) and has mechanical resistance to repetitive folding deformation due to the local torsional deformation of the meander structure. To verify the method, the large curvature self-folding of thick metal layers and their mechanical resistance to repetitive folding deformation is experimentally demonstrated. In addition, an origami/kirigami hybrid stretchable electronic device with light-emitting diodes (LEDs) is fabricated using a double-tiling structure called the perforated extruded Miura-ori. [ABSTRACT FROM AUTHOR]
- Subjects :
- ELECTRONIC equipment
ORIGAMI
CURVATURE
LIGHT emitting diodes
METALS
Subjects
Details
- Language :
- English
- ISSN :
- 2072666X
- Volume :
- 13
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- Micromachines
- Publication Type :
- Academic Journal
- Accession number :
- 157794263
- Full Text :
- https://doi.org/10.3390/mi13060907