Back to Search Start Over

Study on the Conventional Performance and Microscopic Properties of PPA/SBS-Modified Bio-Mixed Asphalt.

Authors :
Liu, Guiyong
Zhang, Wei
Yang, Xiaolong
Ning, Zhikang
Source :
Materials (1996-1944); Jun2022, Vol. 15 Issue 12, p4101-N.PAG, 13p
Publication Year :
2022

Abstract

To promote the construction of environmentally friendly, sustainable pavements and solve the impact of the scarcity of asphalt resources on highway development, bio-mixed asphalt (BMA) modified by SBS and polyphosphoric acid (PPA) was prepared, and the influence of the ratio of bio-asphalt (BA) replacing petroleum asphalt on different PPA/SBS blending schemes was explored through conventional property tests. According to each PPA/SBS blending scheme, the optimal replacement ratio of bio-asphalt was optimized, and the microstructure and distribution morphology of different PPA/SBS-modified BMA were evaluated. Conventional property test results show that with the same PPA/SBS content, the replacement ratio of bio-asphalt has a significant impact on the conventional performance of composite-modified asphalt, but the appropriate replacement ratio of bio-asphalt can improve the storage stability and conventional performance of composite-modified asphalt; in micromorphological analysis, it was found that the number of bee-like structures on the surface of the modified BMA decreased significantly, which indicated that the molecular heterogeneity of various components in the asphalt was reduced. In addition, bio-asphalt changed the particle morphology and improved the dispersity of SBS in asphalt. The composite-modified BMA had a lower SBS content, but its conventional performance was still excellent—so it has significant application prospects in road engineering. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
15
Issue :
12
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
157793264
Full Text :
https://doi.org/10.3390/ma15124101