Back to Search Start Over

A study on the effect of input data length on deep learning based magnitude classifier.

Authors :
Chakraborty, Megha
Wei Li
Faber, Johannes
Rümpker, Georg
Stoecker, Horst
Srivastava, Nishtha
Source :
Solid Earth Discussions; 5/30/2022, p1-11, 11p
Publication Year :
2022

Abstract

The rapid characterisation of earthquake parameters such as its magnitude is at the heart of Earthquake Early Warning (EEW). In traditional EEW methods the robustness in the estimation of earthquake parameters have been observed to increase with the length of input data. Since time is a crucial factor in EEW applications, in this paper we propose a deep learning based magnitude classifier and, further we investigate the effect of using five different durations of seismic waveform data after first P-wave arrival-1s, 3s, 10s, 20s and 30s. This is accomplished by testing the performance of the proposed model that combines Convolution and Bidirectional Long-Short Term Memory units to classify waveforms based on their magnitude into three classes-"noise", "low-magnitude events" and "high-magnitude events". Herein, any earthquake signal with magnitude equal to or above 5.0 is labelled as high-magnitude. We show that the variation in the results produced by changing the length of the data, is no more than the inherent randomness in the trained models, due to their initialisation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18699537
Database :
Complementary Index
Journal :
Solid Earth Discussions
Publication Type :
Academic Journal
Accession number :
157786138