Back to Search
Start Over
Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation.
- Source :
- Frontiers in Immunology; 6/30/2022, Vol. 13, p1-16, 16p
- Publication Year :
- 2022
-
Abstract
- Background: metabolic changes through SARS-CoV-2 infection has been reported but not fully comprehended. This metabolic dysregulation affects multiple organs during COVID-19 and its early detection can be used as a prognosis marker of severity. Therefore, we aimed to characterize metabolic and cytokine profile at COVID-19 onset and its relationship with disease severity to identify metabolic profiles predicting disease progression. Material and Methods: we performed a retrospective cross-sectional study in 123 COVID-19 patients which were stratified as asymptomatic/mild, moderate and severe according to the highest COVID-19 severity status, and a group of healthy controls. We performed an untargeted plasma metabolic profiling (gas chromatography and capillary electrophoresis-mass spectrometry (GC and CE-MS)) and cytokine evaluation. Results: After data filtering and identification we observed 105 metabolites dysregulated (66 GC-MS and 40 CE-MS) which shown different expression patterns for each COVID-19 severity status. These metabolites belonged to different metabolic pathways including amino acid, energy, and nitrogen metabolism among others. Severity-specific metabolic dysregulation was observed, as an increased transformation of L-tryptophan into L-kynurenine. Thus, metabolic profiling at hospital admission differentiate between severe and moderate patients in the later phase of worse evolution. Several plasma pro-inflammatory biomarkers showed significant correlation with deregulated metabolites, specially with L-kynurenine and L-tryptophan. Finally, we describe a strong sex-related dysregulation of metabolites, cytokines and chemokines between severe and moderate patients. In conclusion, metabolic profiling of COVID-19 patients at disease onset is a powerful tool to unravel the SARS-CoV-2 molecular pathogenesis. Conclusions: This technique makes it possible to identify metabolic phenoconversion that predicts disease progression and explains the pronounced pathogenesis differences between sexes. [ABSTRACT FROM AUTHOR]
- Subjects :
- COVID-19
GAS chromatography
TRYPTOPHAN
SARS-CoV-2
HOSPITAL admission & discharge
Subjects
Details
- Language :
- English
- ISSN :
- 16643224
- Volume :
- 13
- Database :
- Complementary Index
- Journal :
- Frontiers in Immunology
- Publication Type :
- Academic Journal
- Accession number :
- 157742035
- Full Text :
- https://doi.org/10.3389/fimmu.2022.925558