Back to Search Start Over

WASp modulates RPA function on single-stranded DNA in response to replication stress and DNA damage.

Authors :
Han, Seong-Su
Wen, Kuo-Kuang
García-Rubio, María L.
Wold, Marc S.
Aguilera, Andrés
Niedzwiedz, Wojciech
Vyas, Yatin M.
Source :
Nature Communications; 6/29/2022, Vol. 13 Issue 1, p1-15, 15p
Publication Year :
2022

Abstract

Perturbation in the replication-stress response (RSR) and DNA-damage response (DDR) causes genomic instability. Genomic instability occurs in Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency disorder, yet the mechanism remains largely uncharacterized. Replication protein A (RPA), a single-strand DNA (ssDNA) binding protein, has key roles in the RSR and DDR. Here we show that human WAS-protein (WASp) modulates RPA functions at perturbed replication forks (RFs). Following genotoxic insult, WASp accumulates at RFs, associates with RPA, and promotes RPA:ssDNA complexation. WASp deficiency in human lymphocytes destabilizes RPA:ssDNA-complexes, impairs accumulation of RPA, ATR, ETAA1, and TOPBP1 at genotoxin-perturbed RFs, decreases CHK1 activation, and provokes global RF dysfunction. las17 (yeast WAS-homolog)-deficient S. cerevisiae also show decreased ScRPA accumulation at perturbed RFs, impaired DNA recombination, and increased frequency of DNA double-strand break (DSB)-induced single-strand annealing (SSA). Consequently, WASp (or Las17)-deficient cells show increased frequency of DSBs upon genotoxic insult. Our study reveals an evolutionarily conserved, essential role of WASp in the DNA stress-resolution pathway, such that WASp deficiency provokes RPA dysfunction-coupled genomic instability. Cancer develops in Wiskott-Aldrich syndrome (WAS). Here the authors identify a role for WAS-protein (WASp) in the DNA stress-resolution pathway by promoting the function of Replication Protein A at replication forks after DNA damage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
157713474
Full Text :
https://doi.org/10.1038/s41467-022-31415-z