Back to Search Start Over

Near‐infrared chemiluminescent carbon nanogels for oncology imaging and therapy.

Authors :
Shen, Chenglong
Jiang, Tianci
Lou, Qing
Zhao, Wenbo
Lv, Chaofan
Zheng, Guangsong
Liu, Hangrui
Li, Pengfei
Dai, Lingling
Liu, Kaikai
Zang, Jinhao
Wang, Feng
Dong, Lin
Qu, Songnan
Cheng, Zhe
Shan, Chongxin
Source :
SmartMat; Jun2022, Vol. 3 Issue 2, p269-285, 17p
Publication Year :
2022

Abstract

Carbon nanogels (CNGs) with dual ability of reactive oxygen species (ROS) imaging and photodynamic therapy have been designed with self‐assembled chemiluminescent carbonized polymer dots (CPDs). With efficient deep‐red/near‐infrared chemiluminescence (CL) emission and distinctive photodynamic capacity, the H2O2‐driven chemiluminescent CNGs are further designed by assembling the polymeric conjugate and CL donors, enabling an in vitro and in vivo ROS bioimaging capability in animal inflammation models and a high‐performance therapy for xenograft tumors. Mechanistically, ROS generated in inflammatory sites or tumor microenvironment can trigger the chemically initiated electron exchange luminescence in the chemical reaction of peroxalate and H2O2, enabling in vivo CL imaging. Meanwhile, part of the excited‐state electrons will transfer to the ambient H2O or dissolved oxygen and in turn lead to the type I and type II photochemical ROS production of hydroxyl radicals or singlet oxygen, endowing the apoptosis of tumor cells and thus enabling cancer therapy. These results open up a new avenue for the design of multifunctional nanomaterials for bioimaging and antienoplastic agents. [ABSTRACT FROM AUTHOR]

Details

Language :
English
Volume :
3
Issue :
2
Database :
Complementary Index
Journal :
SmartMat
Publication Type :
Academic Journal
Accession number :
157692093
Full Text :
https://doi.org/10.1002/smm2.1099