Back to Search Start Over

Efficient Energy-Preserving Exponential Integrators for Multi-component Hamiltonian Systems.

Authors :
Gu, Xuelong
Jiang, Chaolong
Wang, Yushun
Cai, Wenjun
Source :
Journal of Scientific Computing; Jul2022, Vol. 92 Issue 1, p1-38, 38p
Publication Year :
2022

Abstract

In this paper, we develop a framework to construct energy-preserving methods for multi-component Hamiltonian systems, combining the exponential integrator and the partitioned averaged vector field method. This leads to numerical schemes with advantages of original energy conservation, long-time stability and excellent behavior for highly oscillatory or stiff problems. Compared to the existing energy-preserving exponential integrators (EP-EI) in practical implementation, our proposed methods are much efficient which can at least be computed by subsystem instead of handling a nonlinear coupling system at a time. Moreover, for most cases, such as the Klein-Gordon-Schrödinger equations and the Klein-Gordon-Zakharov equations considered in this paper, the computational cost can be further reduced. Specifically, one part of the derived schemes is totally explicit and the other is linearly implicit. In addition, we present rigorous proof of conserving the original energy of Hamiltonian systems, in which an alternative technique is utilized so that no additional assumptions are required, in contrast to the proof strategies used for the existing EP-EI. Numerical experiments are provided to demonstrate the significant advantages in accuracy, computational efficiency and the ability to capture highly oscillatory solutions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08857474
Volume :
92
Issue :
1
Database :
Complementary Index
Journal :
Journal of Scientific Computing
Publication Type :
Academic Journal
Accession number :
157469948
Full Text :
https://doi.org/10.1007/s10915-022-01874-z