Back to Search
Start Over
Low doses of BPF-induced hypertrophy in cardiomyocytes derived from human embryonic stem cells via disrupting the mitochondrial fission upon the interaction between ERβ and calcineurin A-DRP1 signaling pathway.
- Source :
- Cell Biology & Toxicology; Jun2022, Vol. 38 Issue 3, p409-426, 18p
- Publication Year :
- 2022
-
Abstract
- Bisphenol F (BPF) is a replacement to bisphenol A, which has been extensively used in industrial manufacturing. Its wide detection in various human samples raises increasing concern on its safety. Currently, whether a low dose of BPF compromises cardiac function is still unknown. This study provides the first evidence that low-dose BPF can induce cardiac hypertrophy by using cardiomyocytes derived from human embryonic stem cells (hES). Non-cytotoxic BPF increased cytosolic Ca 2+ influx ([Ca2+ ]c), which was most remarkable at low dose (7 ng/ml) rather than at higher doses. Significant changes in the morphological parameters of mitochondria and significant decreases in ATP production were induced by 7 ng/ml BPF, representing a classic hypertrophic cardiomyocyte. After eliminating the direct effects on mitochondrial fission-related DRP1 by administration of the DRP1 inhibitor Mdivi-1, we examined the changes in [Ca 2+ ]c levels induced by BPF, which enhanced the calcineurin (Cn) activity and induced the abnormal mitochondrial fission via the CnAβ-DRP1 signaling pathway. BPF triggered excessive Ca 2+ influx by disrupting the L-type Ca 2+channel in cardiomyocytes. The interaction between ERβ and CnAβ cooperatively involved in the BPF-induced Ca 2+ influx, which resulted in the abnormal mitochondrial fission and compromised the cardiac function. Our findings provide a feasible molecular mechanism for explaining low-dose BPF-induced cardiac hypertrophy in vitro, preliminarily suggesting that BPF may not be as safe as assumed in humans. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 07422091
- Volume :
- 38
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Cell Biology & Toxicology
- Publication Type :
- Academic Journal
- Accession number :
- 157464456
- Full Text :
- https://doi.org/10.1007/s10565-021-09615-y