Back to Search Start Over

Hear Sign Language: A Real-Time End-to-End Sign Language Recognition System.

Authors :
Wang, Zhibo
Zhao, Tengda
Ma, Jinxin
Chen, Hongkai
Liu, Kaixin
Shao, Huajie
Wang, Qian
Ren, Ju
Source :
IEEE Transactions on Mobile Computing; Jul2022, Vol. 21 Issue 7, p2398-2410, 13p
Publication Year :
2022

Abstract

Sign language recognition (SLR) bridges the communication gap between the hearing-impaired and the ordinary people. However, existing SLR systems either cannot provide continuous recognition or suffer from low recognition accuracy due to the difficulty of sign segmentation and the insufficiency of capturing both finger and arm motions. The latest system, SignSpeaker, has a significant limit in recognizing two-handed signs with only one smartwatch. To address these problems, this paper designs a novel real-time end-to-end SLR system, called DeepSLR, to translate sign language into voices to help people “hear” sign language. Specifically, two armbands embedded with an IMU sensor and multi-channel sEMG sensors are attached on the forearms to capture both coarse-grained arm movements and fine-grained finger motions. We propose an attention-based encoder-decoder model with a multi-channel convolutional neural network (CNN) to realize accurate, scalable, and end-to-end continuous SLR without sign segmentation. We have implemented DeepSLR on a smartphone and evaluated its effectiveness through extensive evaluations. The average word error rate of continuous sentence recognition is 10.8 percent, and it takes less than 1.1s for detecting signals and recognizing a sentence with 4 sign words, validating the recognition efficiency and real-time ability of DeepSLR in real-world scenarios. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15361233
Volume :
21
Issue :
7
Database :
Complementary Index
Journal :
IEEE Transactions on Mobile Computing
Publication Type :
Academic Journal
Accession number :
157258618
Full Text :
https://doi.org/10.1109/TMC.2020.3038303