Back to Search Start Over

In Vivo Renal Lipid Quantification by Accelerated Magnetic Resonance Spectroscopic Imaging at 3T: Feasibility and Reliability Study.

Authors :
Alhulail, Ahmad A.
Servati, Mahsa
Ooms, Nathan
Akin, Oguz
Dincer, Alp
Thomas, M. Albert
Dydak, Ulrike
Emir, Uzay E.
Source :
Metabolites (2218-1989); May2022, Vol. 12 Issue 5, p386-386, 10p
Publication Year :
2022

Abstract

A reliable and practical renal-lipid quantification and imaging method is needed. Here, the feasibility of an accelerated MRSI method to map renal fat fractions (FF) at 3T and its repeatability were investigated. A 2D density-weighted concentric-ring-trajectory MRSI was used for accelerating the acquisition of 48 × 48 voxels (each of 0.25 mL spatial resolution) without respiratory navigation implementations. The data were collected over 512 complex-FID timepoints with a 1250 Hz spectral bandwidth. The MRSI sequence was designed with a metabolite-cycling technique for lipid–water separation. The in vivo repeatability performance of the sequence was assessed by conducting a test–reposition–retest study within healthy subjects. The coefficient of variation (CV) in the estimated FF from the test–retest measurements showed a high degree of repeatability of MRSI-FF (CV = 4.3 ± 2.5%). Additionally, the matching level of the spectral signature within the same anatomical region was also investigated, and their intrasubject repeatability was also high, with a small standard deviation (8.1 ± 6.4%). The MRSI acquisition duration was ~3 min only. The proposed MRSI technique can be a reliable technique to quantify and map renal metabolites within a clinically acceptable scan time at 3T that supports the future application of this technique for the non-invasive characterization of heterogeneous renal diseases and tumors. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22181989
Volume :
12
Issue :
5
Database :
Complementary Index
Journal :
Metabolites (2218-1989)
Publication Type :
Academic Journal
Accession number :
157237574
Full Text :
https://doi.org/10.3390/metabo12050386