Back to Search
Start Over
Minimization of Torque Ripples in Multi-Stack Slotted Stator Axial-Flux Synchronous Machine by Modifying Magnet Shape.
- Source :
- Mathematics (2227-7390); May2022, Vol. 10 Issue 10, p1653-1653, 16p
- Publication Year :
- 2022
-
Abstract
- This paper presents a proposed model of a multi-stack slotted stator axial-flux type permanent magnet synchronous machine (AFPMSM) specifically for reducing torque ripple. The proposed AFPMSM model uses pentagon-shaped permanent magnets (PMs). It has a low value of cogging torque and torque ripples compared to the conventional model with a trapezoidal magnet shape. Additionally, it has increased internal generated voltage (Ef) as compared to the conventional model. To further enhance Ef phases and minimize cogging torque of the proposed model, the proposed AFPMSM model was optimized by varying different sides of PMs using a genetic algorithm (GA). A time-stepped three-dimensional (3D) finite element analysis (FEA) was performed for the comparative analysis of conventional, proposed, and optimized AFPMSM models. From this comparative performance analysis, it is observed that torque ripples and cogging torque of the optimized AFPMSM are significantly decreased, while output average torque is appreciably increased. Ef and output power are also enhanced. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 22277390
- Volume :
- 10
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Mathematics (2227-7390)
- Publication Type :
- Academic Journal
- Accession number :
- 157237421
- Full Text :
- https://doi.org/10.3390/math10101653