Back to Search Start Over

Galloylated proanthocyanidins in dentin matrix exhibit biocompatibility and induce differentiation in dental stem cells.

Authors :
Kulakowski, Daniel
Phansalkar, Rasika M
Leme-Kraus, Ariene A
McAlpine, James B
Chen, Shao-Nong
Pauli, Guido F
Ravindran, Sriram
Bedran-Russo, Ana K
Source :
Journal of Bioactive & Compatible Polymers; May2022, Vol. 37 Issue 3, p220-230, 11p
Publication Year :
2022

Abstract

Grape seed extract contains a complex mixture of proanthocyanidins (PACs), a class of plant biopolymers that can be used as a biomaterial to improve reparative and preventive dental therapies. Co-polymerization of PACs with type I collagen mechanically reinforces the dentin extracellular matrix. This study assessed the biocompatibility of PACs from grape seed extract on dental pulp stem cells (DPSCs) in a model simulating leaching through dentin to the pulp cavity. The aim was to determine the type of PACs (galloylated vs. non-galloylated) within grape seed extract that are most compatible with dental pulp tissue. Human demineralized dentin was treated with selectively-enriched dimeric PACs prepared from grape seed extract using liquid-liquid chromatography. DPSCs were cultured within a 2D matrix and exposed to PAC-treated dentin extracellular matrix. Cell proliferation was measured using the MTS assay and expression of odontoblastic genes was analyzed by qRT-PCR. Categorization of PACs leaching from dentin was performed using HPLC-MS. Enriched dimeric fractions containing galloylated PACs increased the expression of certain odontoblastic genes in DPSCs, including Runt-related transcription factor 2 (RUNX2), vascular endothelial growth factor (VEGF), bone morphogenetic protein 2 (BMP2), basic fibroblast growth factor (FGF2), dentin sialophosphoprotein (DSPP) and collagen, type I, alpha 1 (COLI). Galloylated dimeric PACs also exhibited minor effects on DPSC proliferation, resulting in a decrease compared to control after 5 days of treatment. The non-galloylated dimer fraction had no effect on these genes or on DPSC proliferation. Galloylated PACs are biocompatible with DPSCs and may even exert a beneficial effect on cells within dental pulp tissue. The observed increase in odontoblastic genes induced by galloylated PACs together with a decrease in DPSC proliferation is suggestive of a shift toward cell differentiation. This data supports the use of dimeric PACs as a safe biomaterial, with galloylated dimeric PACs exhibiting potential benefits to odontoblasts supporting dentin regeneration. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08839115
Volume :
37
Issue :
3
Database :
Complementary Index
Journal :
Journal of Bioactive & Compatible Polymers
Publication Type :
Academic Journal
Accession number :
157224406
Full Text :
https://doi.org/10.1177/08839115221095154