Back to Search Start Over

Chord: an ensemble machine learning algorithm to identify doublets in single-cell RNA sequencing data.

Authors :
Xiong, Ke-Xu
Zhou, Han-Lin
Lin, Cong
Yin, Jian-Hua
Kristiansen, Karsten
Yang, Huan-Ming
Li, Gui-Bo
Source :
Communications Biology; 5/30/2022, Vol. 5 Issue 1, p1-11, 11p
Publication Year :
2022

Abstract

High-throughput single-cell RNA sequencing (scRNA-seq) is a popular method, but it is accompanied by doublet rate problems that disturb the downstream analysis. Several computational approaches have been developed to detect doublets. However, most of these methods may yield satisfactory performance in some datasets but lack stability in others; thus, it is difficult to regard a single method as the gold standard which can be applied to all types of scenarios. It is a difficult and time-consuming task for researchers to choose the most appropriate software. We here propose Chord which implements a machine learning algorithm that integrates multiple doublet detection methods to address these issues. Chord had higher accuracy and stability than the individual approaches on different datasets containing real and synthetic data. Moreover, Chord was designed with a modular architecture port, which has high flexibility and adaptability to the incorporation of any new tools. Chord is a general solution to the doublet detection problem. For the unmet need to choose the suitable doublet detection method, an ensemble machine learning algorithm called Chord was developed, which integrates multiple methods and achieves higher accuracy and stability on different scRNA-seq datasets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23993642
Volume :
5
Issue :
1
Database :
Complementary Index
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
157151537
Full Text :
https://doi.org/10.1038/s42003-022-03476-9