Back to Search Start Over

Vehicle License Plate Recognition Using Shufflenetv2 Dilated Convolution for Intelligent Transportation Applications in Urban Internet of Things.

Authors :
Li, Xiufeng
Wen, Zheng
Hua, Qiaozhi
Source :
Wireless Communications & Mobile Computing; 5/19/2022, p1-9, 9p
Publication Year :
2022

Abstract

Intelligent transportation applications based on urban Internet of Things can improve the efficiency of government services and promote urban modernization. As smart cameras are more and more widely used in cities, artificial intelligence technology is an important force to achieve license plate recognition. An efficient license plate recognition algorithm not only improves the efficiency of traffic management but also saves management costs. This paper proposes a network based on the shufflenetv2 dilated convolution (SDC) model, which includes two parts: license plate location and license plate recognition. SDC model adopts shufflenetv2 as the backbone network, which combines dilated convolution and global context blocks. Therefore, the receptive field and feature expression ability of the model are enhanced. For license plate location, CIOU loss considers not only the coverage area of the bounding box but also the center distance and aspect ratio. For license plate recognition, CTC loss trains the network based on the sequence and solves the sample alignment problem, which improves the accuracy of license plate recognition. The experiments show that the precision of the SDC model in license plate location is 98.7%, which is 5.2%, 5.5%, and 4.1% higher than the precision of Faster-RCNN, YOLOv3, and SSD, respectively. The precision of the SDC model in license plate recognition is 98.2%, which is 5.3%, 3.7%, and 2.9% higher than the precision of LPRNet, AlexNet, and RPNet, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15308669
Database :
Complementary Index
Journal :
Wireless Communications & Mobile Computing
Publication Type :
Academic Journal
Accession number :
156979071
Full Text :
https://doi.org/10.1155/2022/3627246