Back to Search
Start Over
Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction.
- Source :
- Nature Communications; 5/17/2022, Vol. 13 Issue 1, p1-14, 14p
- Publication Year :
- 2022
-
Abstract
- Many eukaryotic genes contain alternative promoters with distinct expression patterns. How these promoters are differentially regulated remains elusive. Here, we apply single-molecule imaging to quantify the transcriptional regulation of two alternative promoters (P1 and P2) of the Bicoid (Bcd) target gene hunchback in syncytial blastoderm Drosophila embryos. Contrary to the previous notion that Bcd only activates P2, we find that Bcd activates both promoters via the same two enhancers. P1 activation is less frequent and requires binding of more Bcd molecules than P2 activation. Using a theoretical model to relate promoter activity to enhancer states, we show that the two promoters follow common transcription kinetics driven by sequential Bcd binding at the two enhancers. Bcd binding at either enhancer primarily activates P2, while P1 activation relies more on Bcd binding at both enhancers. These results provide a quantitative framework for understanding the kinetic mechanisms of complex eukaryotic gene regulation. Alternative promoters differ in their expression patterns, whose mechanisms are not well understood. Here the authors show that alternative promoters of a Drosophila embryonic gene hunchback are regulated by different action modes of two enhancers. [ABSTRACT FROM AUTHOR]
- Subjects :
- GENETIC regulation
GENETIC transcription regulation
BLASTODERM
DROSOPHILA
EMBRYOS
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 13
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 156930563
- Full Text :
- https://doi.org/10.1038/s41467-022-30315-6