Back to Search Start Over

Symbiosis Between D2D Communication and Industrial IoT for Industry 5.0 in 5G mm-Wave Cellular Network: An Interference Management Approach.

Authors :
Sarma, Subhra Sankha
Hazra, Ranjay
Mukherjee, Amrit
Source :
IEEE Transactions on Industrial Informatics; Aug2022, Vol. 18 Issue 8, p5527-5536, 10p
Publication Year :
2022

Abstract

Industrial Internet of Things (IIoT) paves way into Industry 5.0, which incorporates human–machine collaboration, thereby making manufacturing industry efficient. As 5G architecture supports massive IoT connectivity and has higher spectrum efficiency, device-to-device (D2D) communication is favorable at 28 GHz. While transmitting data from sensors to end user through IoT network, interference affects the system. Thus, an efficient resource allocation scheme is needed for minimizing interference and increasing data rate. Here, formulated problem is divided into two subproblems, channel assignment and power optimization in order to lower computational complexity. A partial resource multiplexing scheme is proposed that will allocate channels to available D2D users. Later, power optimization problem is formulated which is determined through Lagrangian dual optimization technique. Dynamic sectorization overcomes issue of increase in user traffic. Stability factor, fairness index (FI), and energy efficiency depict the performance superiority of proposed scheme over existing schemes. Simulation results prove efficacy of proposed system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15513203
Volume :
18
Issue :
8
Database :
Complementary Index
Journal :
IEEE Transactions on Industrial Informatics
Publication Type :
Academic Journal
Accession number :
156799855
Full Text :
https://doi.org/10.1109/TII.2021.3134285