Back to Search
Start Over
Top Surface Roughness Modeling for Robotic Wire Arc Additive Manufacturing.
- Source :
- Journal of Manufacturing & Materials Processing; Apr2022, Vol. 6 Issue 2, p39-39, 13p
- Publication Year :
- 2022
-
Abstract
- Wire Arc Additive Manufacturing (WAAM) has many applications in fabricating complex metal parts. However, controlling surface roughness is very challenging in WAAM processes. Typically, machining methods are applied to reduce the surface roughness after a part is fabricated, which is costly and ineffective. Therefore, controlling the WAAM process parameters to achieve better surface roughness is important. This paper proposes a machine learning method based on Gaussian Process Regression to construct a model between the WAAM process parameters and top surface roughness. In order to measure the top surface roughness of a manufactured part, a 3D laser measurement system is developed. The experimental datasets are collected and then divided into training and testing datasets. A top surface roughness model is then constructed using the training datasets and verified using the testing datasets. Experimental results demonstrate that the proposed method achieves less than 50 μm accuracy in surface roughness prediction. [ABSTRACT FROM AUTHOR]
- Subjects :
- SURFACE roughness
KRIGING
LASER measurement
Subjects
Details
- Language :
- English
- ISSN :
- 25044494
- Volume :
- 6
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Journal of Manufacturing & Materials Processing
- Publication Type :
- Academic Journal
- Accession number :
- 156534169
- Full Text :
- https://doi.org/10.3390/jmmp6020039