Back to Search Start Over

Top Surface Roughness Modeling for Robotic Wire Arc Additive Manufacturing.

Authors :
Chen, Heping
Yaseer, Ahmed
Zhang, Yuming
Source :
Journal of Manufacturing & Materials Processing; Apr2022, Vol. 6 Issue 2, p39-39, 13p
Publication Year :
2022

Abstract

Wire Arc Additive Manufacturing (WAAM) has many applications in fabricating complex metal parts. However, controlling surface roughness is very challenging in WAAM processes. Typically, machining methods are applied to reduce the surface roughness after a part is fabricated, which is costly and ineffective. Therefore, controlling the WAAM process parameters to achieve better surface roughness is important. This paper proposes a machine learning method based on Gaussian Process Regression to construct a model between the WAAM process parameters and top surface roughness. In order to measure the top surface roughness of a manufactured part, a 3D laser measurement system is developed. The experimental datasets are collected and then divided into training and testing datasets. A top surface roughness model is then constructed using the training datasets and verified using the testing datasets. Experimental results demonstrate that the proposed method achieves less than 50 μm accuracy in surface roughness prediction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25044494
Volume :
6
Issue :
2
Database :
Complementary Index
Journal :
Journal of Manufacturing & Materials Processing
Publication Type :
Academic Journal
Accession number :
156534169
Full Text :
https://doi.org/10.3390/jmmp6020039