Back to Search Start Over

NTH2 1271_1272delTA Gene Disruption Results in Salt Tolerance in Saccharomyces cerevisiae.

Authors :
Hernández-Soto, Alejandro
Delgado-Navarro, José Pablo
Benavides-Acevedo, Miguel
Paniagua, Sergio A.
Gatica-Arias, Andres
Source :
Fermentation (Basel); Apr2022, Vol. 8 Issue 4, p166-166, 14p
Publication Year :
2022

Abstract

Trehalose is a common energy reservoir, and its accumulation results in osmotic protection. This sugar can accumulate through its synthesis or slow degradation of the reservoir by trehalase enzymes. Saccharomyces cerevisiae contains two neutral trehalases, NTH1 and NTH2, responsible for 75% and 25% of the enzymatic metabolism. We were interested in the loss-of-function of both enzymes with CRISPR/Cas9. The later NTH2 was of great importance since it is responsible for minor metabolic degradation of this sugar. It was believed that losing its functionality results in limited osmotic protection. We constructed an osmotolerant superior yeast capable of growing in 0.85 M NaCl after independent nth21271_1272delTA mutation by CRISPR/Cas9 technology, compared with nth1 893_894insT and wild type. We suggest that this yeast model could give clues to breeding commercial yeast resulting in non-GMO salinity-tolerant strains. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23115637
Volume :
8
Issue :
4
Database :
Complementary Index
Journal :
Fermentation (Basel)
Publication Type :
Academic Journal
Accession number :
156533067
Full Text :
https://doi.org/10.3390/fermentation8040166