Back to Search Start Over

Creating a Novel Mathematical Model of the Kv10.1 Ion Channel and Controlling Channel Activity with Nanoelectromechanical Systems.

Authors :
Lozanović Šajić, Jasmina
Langthaler, Sonja
Baumgartner, Christian
Source :
Applied Sciences (2076-3417); Apr2022, Vol. 12 Issue 8, p3836, 12p
Publication Year :
2022

Abstract

Featured Application: Nanoelectromechanical systems and nanorobots can be used to treat cancers associated with the Kv10.1 voltage-gated ion channel activity. The Kv10.1 model was developed by applying the control engineering theory. Nanoelectromechanical systems play the role of a PID regulator. The use of nanoelectromechanical systems or nanorobots offers a new concept for sensing and controlling subcellular structures, such as ion channels. We present here a novel method for mathematical modeling of ion channels based on control system theory and system identification. We investigated the use of nanoelectromechanical devices to control the activity of ion channels, particularly the activity of the voltage-gated ion channel Kv10.1, an important channel in cancer development and progression. A mathematical model of the dynamic behavior of the selected ion channel Kv10.1 in the Laplace (s) domain was developed, which is given in the representation of a transfer function. In addition, we addressed the possibilities of controlling ion channel activity by nanoelectromechanical devices and nanorobots and finally presented a control algorithm for the Kv10.1 as a control object. A use case demonstrates the potential of a Kv10.1 controlled nanorobot for cancer treatment at a single-cell level. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
12
Issue :
8
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
156503902
Full Text :
https://doi.org/10.3390/app12083836