Back to Search Start Over

Assessing clinical applicability of COVID-19 detection in chest radiography with deep learning.

Authors :
Pedrosa, João
Aresta, Guilherme
Ferreira, Carlos
Carvalho, Catarina
Silva, Joana
Sousa, Pedro
Ribeiro, Lucas
Mendonça, Ana Maria
Campilho, Aurélio
Source :
Scientific Reports; 4/21/2022, Vol. 12 Issue 1, p1-17, 17p
Publication Year :
2022

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has impacted healthcare systems across the world. Chest radiography (CXR) can be used as a complementary method for diagnosing/following COVID-19 patients. However, experience level and workload of technicians and radiologists may affect the decision process. Recent studies suggest that deep learning can be used to assess CXRs, providing an important second opinion for radiologists and technicians in the decision process, and super-human performance in detection of COVID-19 has been reported in multiple studies. In this study, the clinical applicability of deep learning systems for COVID-19 screening was assessed by testing the performance of deep learning systems for the detection of COVID-19. Specifically, four datasets were used: (1) a collection of multiple public datasets (284.793 CXRs); (2) BIMCV dataset (16.631 CXRs); (3) COVIDGR (852 CXRs) and 4) a private dataset (6.361 CXRs). All datasets were collected retrospectively and consist of only frontal CXR views. A ResNet-18 was trained on each of the datasets for the detection of COVID-19. It is shown that a high dataset bias was present, leading to high performance in intradataset train-test scenarios (area under the curve 0.55–0.84 on the collection of public datasets). Significantly lower performances were obtained in interdataset train-test scenarios however (area under the curve > 0.98). A subset of the data was then assessed by radiologists for comparison to the automatic systems. Finetuning with radiologist annotations significantly increased performance across datasets (area under the curve 0.61–0.88) and improved the attention on clinical findings in positive COVID-19 CXRs. Nevertheless, tests on CXRs from different hospital services indicate that the screening performance of CXR and automatic systems is limited (area under the curve < 0.6 on emergency service CXRs). However, COVID-19 manifestations can be accurately detected when present, motivating the use of these tools for evaluating disease progression on mild to severe COVID-19 patients. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
156503454
Full Text :
https://doi.org/10.1038/s41598-022-10568-3