Back to Search Start Over

Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms.

Authors :
Rabbani, Masoud
Oladzad-Abbasabady, Nastaran
Akbarian-Saravi, Niloofar
Source :
Journal of Industrial & Management Optimization; Mar2022, Vol. 18 Issue 2, p1035-1062, 28p
Publication Year :
2022

Abstract

The shortage of relief vehicles capacity is a common issue throughout disastrous situations due to the abundance of injured people who need urgent medical aid. Hence, ambulances fleet management is highly important to save as many injured individuals as possible. In this regard, the present paper defines different patient groups based on their needs and characteristics. In order to provide the affected people with proper and timely medical aid, changes in their health status are also considered. A Mixed-integer Linear Programming (MILP) model is proposed to find the best sequence of routes for each ambulance and minimize the latest service completion time (SCT) as well as the number of patients whose condition gets worse because of receiving untimely medical services. Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm Optimization (MOPSO) are used to find high-quality solutions over a short time. In the end, Lorestan province, Iran, is considered as a case study to assess the model's performance and analyze the sensitivity of solutions with respect to the major parameters, which results in insightful managerial suggestions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15475816
Volume :
18
Issue :
2
Database :
Complementary Index
Journal :
Journal of Industrial & Management Optimization
Publication Type :
Academic Journal
Accession number :
156480811
Full Text :
https://doi.org/10.3934/jimo.2021007