Back to Search Start Over

Nascent structure memory erased in polymer stretching.

Authors :
Luo, Wen
Yu, Yihuan
Wang, Jiping
Hu, Wenbing
Source :
Journal of Chemical Physics; 4/14/2022, Vol. 156 Issue 14, p1-9, 9p
Publication Year :
2022

Abstract

Stretching of semicrystalline polymer materials is fundamentally important in their mechanical performance and industrial processing. By means of dynamic Monte Carlo simulations, we compared the parallel stretching processes between the initially bulk amorphous and semicrystalline polymers at various temperatures. In the early stage of stretching, semicrystalline polymers perform local and global melting-recrystallization behaviors at low and high temperatures, while the memory effects occur upon global melting-recrystallization at middle temperatures. However, the final crystallinities, crystalline bond orientations, chain-folding probabilities, residual stresses, and crystallite morphologies at high enough strains appear as the same at each temperature, irrelevant to the initially amorphous and semicrystalline polymers, indicating that the common post-growth melting-reorganization processes determine the final products. In addition, both final products harvest the highest crystallinities in the middle temperature region because the postgrowth stage yields the vast nuclei followed with less extent of crystal growth in the low temperature region and few nuclei followed with large extent of crystal growth in the high temperature region. Our observations imply that a large enough strain can effectively remove the thermal history of polymers, similar to the thermal treatment at a high enough temperature; therefore, the fracture strength of semicrystalline polymers depends upon their final structures in stretching, not related to their nascent semicrystalline structures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
156
Issue :
14
Database :
Complementary Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
156341087
Full Text :
https://doi.org/10.1063/5.0083952