Back to Search
Start Over
Single-cell characterization of leukemic and non-leukemic immune repertoires in CD8+ T-cell large granular lymphocytic leukemia.
- Source :
- Nature Communications; 4/11/2022, Vol. 13 Issue 1, p1-16, 16p
- Publication Year :
- 2022
-
Abstract
- T cell large granular lymphocytic leukemia (T-LGLL) is a rare lymphoproliferative disorder of mature, clonally expanded T cells, where somatic-activating STAT3 mutations are common. Although T-LGLL has been described as a chronic T cell response to an antigen, the function of the non-leukemic immune system in this response is largely uncharacterized. Here, by utilizing single-cell RNA and T cell receptor profiling (scRNA+TCRαβ-seq), we show that irrespective of STAT3 mutation status, T-LGLL clonotypes are more cytotoxic and exhausted than healthy reactive clonotypes. In addition, T-LGLL clonotypes show more active cell communication than reactive clones with non-leukemic immune cells via costimulatory cell–cell interactions, monocyte-secreted proinflammatory cytokines, and T-LGLL-clone-secreted IFNγ. Besides the leukemic repertoire, the non-leukemic T cell repertoire in T-LGLL is also more mature, cytotoxic, and clonally restricted than in other cancers and autoimmune disorders. Finally, 72% of the leukemic T-LGLL clonotypes share T cell receptor similarities with their non-leukemic repertoire, linking the leukemic and non-leukemic repertoires together via possible common target antigens. Our results provide a rationale to prioritize therapies that target the entire immune repertoire and not only the T-LGLL clonotype. T cell large granular lymphocytic leukemia (T-LGLL) is a lymphoproliferative disorder involving clonally expanded T cell clones and is not fully understood. Here the authors show that the rest of the immune repertoire is interconnected with the T-LGLL clonotype(s) and is more mature, cytotoxic and clonally restricted than in other cancers and autoimmune disorders. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 13
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 156244638
- Full Text :
- https://doi.org/10.1038/s41467-022-29173-z