Back to Search Start Over

Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species.

Authors :
Li, Chaokun
Liao, Shangteng
Chen, Shanglin
Chen, Nan
Zhang, Feng
Yang, Kai
Song, Qiuling
Source :
Nature Communications; 4/4/2022, Vol. 13 Issue 1, p1-12, 12p
Publication Year :
2022

Abstract

Tetracoordinate boron species have emerged as radical precursors via deboronation by photo-induced single electron transfer (SET) pathway. These reactions usually produce an alkyl radical and boron-bound species, and the valuable boron species are always discarded as a by-product. Given the importance of boron species, it will be very attractive if the two parts could be incorporated into the eventual products. Herein we report a photo-catalyzed strategy in which in situ generated tetracoordinated boron species decomposed into both alkyl radicals and boron species under visible light irradiation, due to the pre-installation of a vinyl group on the aromatic ring, the newly generated alkyl radical attacks the vinyl group while leaving the boron species on ipso-position, then both radical part and boron moiety are safely incorporated into the final product. Tertiary borons, secondary borons, gem-diborons as well as 1,2-diborons, and versatile electrophiles are all well tolerated under this transformation, of note, ortho-, meta- and para-bromostyrenes all demonstrated good capabilities. The reaction portraits high atom economy, broad substrate scope, and diversified valuable products with tertiary or quaternary carbon center generated, with diborons as substrates, Csp<superscript>2</superscript>-B and Csp<superscript>3</superscript>-B are established simultaneously, which are precious synthetic building blocks in chemical synthesis. Tetracoordinate boron species are common radical precursors in organic synthesis, but the boron species are discarded as by-products. Herein the authors report a strategy to incorporate both the alkyl moiety and boron species into the eventual products, yielding organoboron compounds. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
156102425
Full Text :
https://doi.org/10.1038/s41467-022-29466-3