Back to Search Start Over

Inter-paralog amino acid inversion events in large phylogenies of duplicated proteins.

Authors :
Pascarelli, Stefano
Laurino, Paola
Source :
PLoS Computational Biology; 4/4/2022, Vol. 18 Issue 4, p1-22, 22p, 2 Diagrams, 1 Chart, 2 Graphs
Publication Year :
2022

Abstract

Connecting protein sequence to function is becoming increasingly relevant since high-throughput sequencing studies accumulate large amounts of genomic data. In order to go beyond the existing database annotation, it is fundamental to understand the mechanisms underlying functional inheritance and divergence. If the homology relationship between proteins is known, can we determine whether the function diverged? In this work, we analyze different possibilities of protein sequence evolution after gene duplication and identify "inter-paralog inversions", i.e., sites where the relationship between the ancestry and the functional signal is decoupled. The amino acids in these sites are masked from being recognized by other prediction tools. Still, they play a role in functional divergence and could indicate a shift in protein function. We develop a method to specifically recognize inter-paralog amino acid inversions in a phylogeny and test it on real and simulated datasets. In a dataset built from the Epidermal Growth Factor Receptor (EGFR) sequences found in 88 fish species, we identify 19 amino acid sites that went through inversion after gene duplication, mostly located at the ligand-binding extracellular domain. Our work uncovers an outcome of protein duplications with direct implications in protein functional annotation and sequence evolution. The developed method is optimized to work with large protein datasets and can be readily included in a targeted protein analysis pipeline. Author summary: Proteins are critical components of living systems because they facilitate most biological processes like protein synthesis, DNA replication, chemical catalysis, etc. Proteins are encoded in their genes. During evolution, genes accumulate mutations that get translated at the protein level. These mutations can be "neutral" if they do not affect the protein function immediately and directly; otherwise, mutations can be functional if they directly modify protein function. An event that provides an opportunity to study protein function is gene duplication namely, when two copies of a gene encoding the same protein appear. One copy of the protein often retains the same function while the other is free to diverge and specialize to a different function. This work sheds light on an alternative outcome of gene duplication that might be critical to discern between neutral and functional mutations. By looking at 88 fish genomes, we found proteins in which the evolution of their sequences does not follow the expected pattern of divergence after gene duplication. In this case, the protein sequence of a subgroup of species diverges in the copy expected to retain its function, while the sequence is retained in the expectedly divergent one. We called this event "inter-paralog amino acid inversion". Our data shows that this "inversion" event is correlated to function, and its detection has to be considered for assigning protein functions correctly. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1553734X
Volume :
18
Issue :
4
Database :
Complementary Index
Journal :
PLoS Computational Biology
Publication Type :
Academic Journal
Accession number :
156098834
Full Text :
https://doi.org/10.1371/journal.pcbi.1010016