Back to Search
Start Over
An unified formulation of strong non-local elasticity with fractional order calculus.
- Source :
- Meccanica; Apr2022, Vol. 57 Issue 4, p793-805, 13p
- Publication Year :
- 2022
-
Abstract
- The research of a formulation to model non-local interactions in the mechanical behavior of matter is currently an open problem. In this context, a strong non-local formulation based on fractional calculus is provided in this paper. This formulation is derived from an analogy with long-memory viscoelastic models. Specifically, the same kind of power-law time-dependent kernel used in Boltzmann integral of viscoelastic stress-strain relation is used as kernel in the Fredholm non-local relation. This non-local formulation leads to stress-strain relation based on the space Riesz integral and derivative of fractional order. For unbounded domain, proposed model can be defined in stress- and in strain-driven formulation and in both cases the stress–strain relation represent a strong non-local model. Also, the proposed strain driven and stress driven formulations defined in terms of Riesz operators are proved to be fully consistent each another. Moreover, the proposed model posses a mechanical meaning and for unbounded non-local rod is described and discussed in detail. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00256455
- Volume :
- 57
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Meccanica
- Publication Type :
- Academic Journal
- Accession number :
- 155913380
- Full Text :
- https://doi.org/10.1007/s11012-021-01428-x