Back to Search Start Over

An unified formulation of strong non-local elasticity with fractional order calculus.

Authors :
Alotta, Gioacchino
Di Paola, Mario
Pinnola, Francesco Paolo
Source :
Meccanica; Apr2022, Vol. 57 Issue 4, p793-805, 13p
Publication Year :
2022

Abstract

The research of a formulation to model non-local interactions in the mechanical behavior of matter is currently an open problem. In this context, a strong non-local formulation based on fractional calculus is provided in this paper. This formulation is derived from an analogy with long-memory viscoelastic models. Specifically, the same kind of power-law time-dependent kernel used in Boltzmann integral of viscoelastic stress-strain relation is used as kernel in the Fredholm non-local relation. This non-local formulation leads to stress-strain relation based on the space Riesz integral and derivative of fractional order. For unbounded domain, proposed model can be defined in stress- and in strain-driven formulation and in both cases the stress–strain relation represent a strong non-local model. Also, the proposed strain driven and stress driven formulations defined in terms of Riesz operators are proved to be fully consistent each another. Moreover, the proposed model posses a mechanical meaning and for unbounded non-local rod is described and discussed in detail. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00256455
Volume :
57
Issue :
4
Database :
Complementary Index
Journal :
Meccanica
Publication Type :
Academic Journal
Accession number :
155913380
Full Text :
https://doi.org/10.1007/s11012-021-01428-x