Back to Search
Start Over
Dll1 Can Function as a Ligand of Notch1 and Notch2 in the Thymic Epithelium.
- Source :
- Frontiers in Immunology; 3/17/2022, Vol. 13, p1-12, 12p
- Publication Year :
- 2022
-
Abstract
- T-cell development in the thymus is dependent on Notch signaling induced by the interaction of Notch1, present on immigrant cells, with a Notch ligand, delta-like (Dll) 4, on the thymic epithelial cells. Phylogenetic analysis characterizing the properties of the Dll4 molecule suggests that Dll4 emerged from the common ancestor of lobe- and ray-finned fishes and diverged into bony fishes and terrestrial organisms, including mammals. The thymus evolved in cartilaginous fishes before Dll4, suggesting that T-cell development in cartilaginous fishes is dependent on Dll1 instead of Dll4. In this study, we compared the function of both Dll molecules in the thymic epithelium using Foxn1-cre and Dll4 -floxed mice with conditional transgenic alleles in which the Dll1 or Dll4 gene is transcribed after the cre-mediated excision of the stop codon. The expression of Dll1 in the thymic epithelium completely restored the defect in the Dll4 -deficient condition, suggesting that Dll1 can trigger Notch signaling that is indispensable for T-cell development in the thymus. Moreover, using bone marrow chimeras with Notch1 - or Notch2 -deficient hematopoietic cells, we showed that Dll1 is able to activate Notch signaling, which is sufficient to induce T-cell development, with both the receptors, in contrast to Dll4, which works only with Notch1, in the thymic environment. These results strongly support the hypothesis that Dll1 regulates T-cell development via Notch1 and/or Notch2 in the thymus of cartilaginous fishes and that Dll4 has replaced Dll1 in inducing thymic Notch signaling via Notch1 during evolution. [ABSTRACT FROM AUTHOR]
- Subjects :
- EPITHELIUM
CHONDRICHTHYES
ACTINOPTERYGII
OSTEICHTHYES
EPITHELIAL cells
Subjects
Details
- Language :
- English
- ISSN :
- 16643224
- Volume :
- 13
- Database :
- Complementary Index
- Journal :
- Frontiers in Immunology
- Publication Type :
- Academic Journal
- Accession number :
- 155847500
- Full Text :
- https://doi.org/10.3389/fimmu.2022.852427