Back to Search Start Over

Mathematical analysis of robustness of oscillations in models of the mammalian circadian clock.

Authors :
Yao, Xiangyu
Heidebrecht, Benjamin L.
Chen, Jing
Tyson, John J.
Source :
PLoS Computational Biology; 3/18/2022, Vol. 18 Issue 3, p1-23, 23p, 2 Diagrams, 8 Graphs
Publication Year :
2022

Abstract

Circadian rhythms in a wide range of organisms are mediated by molecular mechanisms based on transcription-translation feedback. In this paper, we use bifurcation theory to explore mathematical models of genetic oscillators, based on Kim & Forger's interpretation of the circadian clock in mammals. At the core of their models is a negative feedback loop whereby PER proteins (PER1 and PER2) bind to and inhibit their transcriptional activator, BMAL1. For oscillations to occur, the dissociation constant of the PER:BMAL1 complex, K^d , must be ≤ 0.04 nM, which is orders of magnitude smaller than a reasonable expectation of 1–10 nM for this protein complex. We relax this constraint by two modifications to Kim & Forger's 'single negative feedback' (SNF) model: first, by introducing a multistep reaction chain for posttranscriptional modifications of Per mRNA and posttranslational phosphorylations of PER, and second, by replacing the first-order rate law for degradation of PER in the nucleus by a Michaelis-Menten rate law. These modifications increase the maximum allowable K^d to ~2 nM. In a third modification, we consider an alternative rate law for gene transcription to resolve an unrealistically large rate of Per2 transcription at very low concentrations of BMAL1. Additionally, we studied extensions of the SNF model to include a second negative feedback loop (involving REV-ERB) and a supplementary positive feedback loop (involving ROR). Contrary to Kim & Forger's observations of these extended models, we find that, with our modifications, the supplementary positive feedback loop makes the oscillations more robust than observed in the models with one or two negative feedback loops. However, all three models are similarly robust when accounting for circadian rhythms (~24 h period) with K^d ≥ 1 nM. Our results provide testable predictions for future experimental studies. Author summary: The circadian rhythm aligns bodily functions to the day/night cycle and is important for our health. The rhythm originates from an intracellular molecular clock mechanism that mediates rhythmic gene expression. It is long understood that transcriptional negative feedback with sufficient time delay is key to generating circadian oscillations. However, some of the most widely cited mathematical models for the circadian clock suffer from problems of parameter 'fragilities'. That is, sustained oscillations are possible only for physically unrealistic parameter values. A recent model by Kim & Forger nicely incorporates the inhibitory binding of PER proteins to their transcription activator BMAL1, but oscillations in the Kim-Forger model require a binding affinity between PER and BMAL1 that is orders of magnitude larger than observed binding affinities of protein complexes. To rectify this problem, we make several physiologically credible modifications to the Kim-Forger model, which allow oscillations to occur with more realistic binding affinities. The modified model is further extended to explore the potential roles of supplementary feedback loops in the mammalian clock mechanism. Ultimately, accurate models of the circadian clock will provide better predictive tools for chronotherapy and chrono-pharmacology studies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1553734X
Volume :
18
Issue :
3
Database :
Complementary Index
Journal :
PLoS Computational Biology
Publication Type :
Academic Journal
Accession number :
155830251
Full Text :
https://doi.org/10.1371/journal.pcbi.1008340