Back to Search Start Over

The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy.

Authors :
Dandan Xu
Haijian Shao
Xing Deng
Xia Wang
Source :
CMES-Computer Modeling in Engineering & Sciences; 2022, Vol. 131 Issue 2, p567-597, 31p
Publication Year :
2022

Abstract

As wind and photovoltaic energy become more prevalent, the optimization of power systems is becoming increasingly crucial. The current state of research in renewable generation and power forecasting technology, such as wind and photovoltaic power (PV), is described in this paper, with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting. The methods for forecasting wind power and PV production. The physical model, statistical learning method, and machine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production. Moreover, the experiments demonstrated that cloud map identification has a significant impact on PV generation. With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes, this paper summarizes the classification of wind power and PV generation systems, as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15261492
Volume :
131
Issue :
2
Database :
Complementary Index
Journal :
CMES-Computer Modeling in Engineering & Sciences
Publication Type :
Academic Journal
Accession number :
155777261
Full Text :
https://doi.org/10.32604/cmes.2022.019245