Back to Search Start Over

Teucrium polium (L.): Phytochemical Screening and Biological Activities at Different Phenological Stages.

Authors :
Sharifi-Rad, Majid
Pohl, Pawel
Epifano, Francesco
Zengin, Gokhan
Jaradat, Nidal
Messaoudi, Mohammed
Source :
Molecules; Mar2022, Vol. 27 Issue 5, p1561, 1p
Publication Year :
2022

Abstract

The aim of the present study was to investigate the changes in the content of phytochemical compounds and in vitro antioxidant, antibacterial, and anti-inflammatory activities of Teucrium polium L. aerial parts and root methanolic extracts at different phenological stages (vegetative, flowering, and seeding). The T. polium extracts were analyzed using gas chromatography–mass spectrometry (GC-MS), and their antioxidant properties were tested with the 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), ferrous ions (Fe<superscript>2+</superscript>), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. Forty-nine compounds were identified with the majority of germacrene D, t-cadinol, β-pinene, carvacrol, bicyclogermacrene, α-pinene, and limonene. The results show that the extracts significantly differ between different phenological stages of the plant material used in terms of the phytochemical composition (total phenolic compounds, total flavonoids, total alkaloids, and total saponin contents) and bioactivities (antioxidant, antibacterial, and anti-inflammatory) (p < 0.05). The highest total contents of phenolics (72.4 ± 2.5 mg gallic acid equivalent (GAE)/g dry weight), flavonoids (36.2 ± 3.1 mg quercetin equivalent (QE)/g dry weight), alkaloids (105.7 ± 2.8 mg atropine equivalent (AE)/g dry weight), and saponins (653 ± 6.2 mg escin equivalent (EE)/g dry weight), as well as antioxidant, antibacterial, and anti-inflammatory activities, were measured for the extract of the aerial parts obtained at the flowering stage. The minimum inhibitory concentration (MIC) values for the extracts were varied within 9.4–300 µg/mL, while the minimum bactericidal concentration (MBC) values were varied within 18.75–600 µg/mL. In addition, they were more active on Gram-positive bacteria than Gram-negative bacteria. The data of this work confirm that the T. polium extracts have significant biological activity and hence can be used in the pharmaceutical industry, clinical applications, and medical research, as well as cosmetic and food industries. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
27
Issue :
5
Database :
Complementary Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
155706848
Full Text :
https://doi.org/10.3390/molecules27051561