Back to Search Start Over

Inference for Kumaraswamy Distribution under Generalized Progressive Hybrid Censoring.

Authors :
Wang, Liang
Zhou, Ying
Lio, Yuhlong
Tripathi, Yogesh Mani
Source :
Symmetry (20738994); Feb2022, Vol. 14 Issue 2, pN.PAG-N.PAG, 1p
Publication Year :
2022

Abstract

In this paper, generalized progressive hybrid censoring is discussed, while a scheme is designed to provide a flexible and symmetrical scenario to collect failure information in the whole life cycle of units. When the lifetime of units follows Kumaraswamy distribution, inference is investigated under classical and Bayesian approaches. The maximum likelihood estimates and associated existence and uniqueness properties are established and the confidence intervals for unknown parameters are provided by using a large sample size based on asymptotic theory. Moreover, the Bayes estimates along with highest probability density credible intervals are also developed through the Monte-Carlo Markov Chain sampling technique to approximate the associated posteriors. Simulation studies and a real-life example are presented for illustration purposes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20738994
Volume :
14
Issue :
2
Database :
Complementary Index
Journal :
Symmetry (20738994)
Publication Type :
Academic Journal
Accession number :
155567627
Full Text :
https://doi.org/10.3390/sym14020403