Back to Search Start Over

Deep anomaly detection in expressway based on edge computing and deep learning.

Authors :
Wang, Juan
Wang, Meng
Liu, Qingling
Yin, Guanxiang
Zhang, Yuejin
Source :
Journal of Ambient Intelligence & Humanized Computing; Mar2022, Vol. 13 Issue 3, p1293-1305, 13p
Publication Year :
2022

Abstract

In order to improve the real-time efficiency of expressway operation monitoring and management, the anomaly detection in intelligent monitoring network of expressway based on edge computing and deep learning is studied. The video data collected by the camera equipment in the intelligent monitoring network structure of the expressway is transmitted to the edge processing server for screening and then sent to the convolutional neural network. The convolutional neural network uses the multi-scale optical flow histogram method to preprocess the video data after the edge calculation to generate the training sample set and send it to the AlexNet model for feature extraction. SVM classifier model is used to train the feature data set and input the features of the test samples into the trained SVM classifier model to realize the anomaly detection in the intelligent monitoring network of expressway. The research method is used to detect the anomaly in an intelligent monitoring network of an expressway. The experimental results show that the method has better detection effect. The miss rate has reduced by 20.34% and 40.76% on average compared with machine learning method and small block learning method, respectively. The false positive rate has reduced by 27.67% and 21.77%, and the detection time is greatly shortened. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18685137
Volume :
13
Issue :
3
Database :
Complementary Index
Journal :
Journal of Ambient Intelligence & Humanized Computing
Publication Type :
Academic Journal
Accession number :
155514899
Full Text :
https://doi.org/10.1007/s12652-020-02574-y