Back to Search
Start Over
Fast and Robust People Detection in RGB Images.
- Source :
- Applied Sciences (2076-3417); Feb2022, Vol. 12 Issue 3, p1225, 24p
- Publication Year :
- 2022
-
Abstract
- People detection in images has many uses today, ranging from face detection algorithms used by social networks to help the users tag other people, to surveillance systems that can create a statistic of the population density in an area, or identify a suspect, or even in the automotive industry as part of the Pedestrian Crash Avoidance Mitigation (PCAM) system. This work focuses on creating a fast and reliable object detection algorithm that will be trained on scenes that depict people in an indoor environment, starting from an existing state-of-the-art approach. The proposed method improves upon the You Only Look Once version 4 (YOLOv4) network by adding a region of interest classification and regression branch such as Faster R-CNN's head. The candidate bounding boxes proposed by YOLOv4 are ranked based on their confidence score, the best candidates being kept and sent as input to the Faster Region-Based Convolutional Neural Network (R-CNN) head. To keep only the best detections, non-maximum suppression is applied to all proposals. This decreases the number of false-positive candidate bounding boxes, the low-confidence detections of the regression and classification branch being eliminated by the detections of YOLOv4 and vice versa in the non-maximum suppression step. This method can be used as the object detection algorithm in an image-based people tracking system, namely Tracktor, having a higher inference speed than Faster R-CNN. Our proposed method manages to achieve an overall accuracy of 95% and an inference time of 22 ms. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 12
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Applied Sciences (2076-3417)
- Publication Type :
- Academic Journal
- Accession number :
- 155242061
- Full Text :
- https://doi.org/10.3390/app12031225