Back to Search Start Over

On Improved 3D-CNN-Based Binary and Multiclass Classification of Alzheimer's Disease Using Neuroimaging Modalities and Data Augmentation Methods.

Authors :
Tufail, Ahsan Bin
Ullah, Kalim
Khan, Rehan Ali
Shakir, Mustafa
Khan, Muhammad Abbas
Ullah, Inam
Ma, Yong-Kui
Ali, Md. Sadek
Source :
Journal of Healthcare Engineering; 2/11/2022, p1-14, 14p
Publication Year :
2022

Abstract

Alzheimer's disease (AD) is an irreversible illness of the brain impacting the functional and daily activities of elderly population worldwide. Neuroimaging sensory systems such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) measure the pathological changes in the brain associated with this disorder especially in its early stages. Deep learning (DL) architectures such as Convolutional Neural Networks (CNNs) are successfully used in recognition, classification, segmentation, detection, and other domains for data interpretation. Data augmentation schemes work alongside DL techniques and may impact the final task performance positively or negatively. In this work, we have studied and compared the impact of three data augmentation techniques on the final performances of CNN architectures in the 3D domain for the early diagnosis of AD. We have studied both binary and multiclass classification problems using MRI and PET neuroimaging modalities. We have found the performance of random zoomed in/out augmentation to be the best among all the augmentation methods. It is also observed that combining different augmentation methods may result in deteriorating performances on the classification tasks. Furthermore, we have seen that architecture engineering has less impact on the final classification performance in comparison to the data manipulation schemes. We have also observed that deeper architectures may not provide performance advantages in comparison to their shallower counterparts. We have further observed that these augmentation schemes do not alleviate the class imbalance issue. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20402295
Database :
Complementary Index
Journal :
Journal of Healthcare Engineering
Publication Type :
Academic Journal
Accession number :
155208009
Full Text :
https://doi.org/10.1155/2022/1302170